
 

 

PV PERFORMANCE MODELLING WITH PVPMC/PVLIB  

 

Steve Ransome1, Josh Stein2, Will Holmgren3, Juergen Sutterlueti4 

1SRCL steve@steveransome.com; 2Sandia jsstein@sandia.gov;  

3 UA holmgren@email.arizona.edu ; 4Gantner J.Sutterlueti@gantner-instruments.com 

 

 

Introduction to PVPMC/PVLIB 

The PVPMC (PV Performance Modelling 
Collaborative) [1] [2] [3] aims to improve 
the accuracy of PV performance models 
and their analysis for instantaneous PV 
performance, predicting energy yield and 
(with financial assumptions) calculating 
investment risk.  

PVLIB (PV Library) is intended to become 
PVPMC’s standard repository for high 
quality PV related analysis algorithms 
particularly from journals, conferences, or 
white papers. The code is open-source 
and is collaboratively developed and 
validated. PVLIB is available in both 
MATLAB and Python language versions. 
This paper will concentrate on the Python 
version. 

Why do we need the PVPMC? 

Most existing simulation programs such as 
PVsyst, PVsol, Helioscope, SAM, 
PVWatts, PVSim(Sunpower) and other in 
house proprietary programs are effectively 
“black boxes” in that users cannot always 
see what algorithms and assumptions 
have been made (although many are 
mentioned in the help files). It’s difficult if 
not impossible to add features to enable 
simulating more complicated systems than 
the program authors allow (for example 
multiple array orientations, varied design, 
different PV panels or inverters). If a bug is 
found it can be time consuming to get the 
authors to fix it correctly and then send out 
an update to all users. There also may be 
limitations in input options that the user 
would like to exceed for example wiring 
losses, VMP tracking limits etc. Creating 
new algorithms is time consuming and can 
lead to errors and are generally difficult to 
individually validate. 

PVLIB - Open Source Toolbox 

The source code for PVLIB is maintained 
on Git Hub  

https://github.com/pvlib/pvlib-python 

Git Hub is a web-based repository hosting 
service with revision control and source 
code management using a Web-based 
graphical interface allowing bug tracking, 
feature requests, task management, and 
wiki help files for projects. Advanced users 
can modify the code on their local 
systems. If a bug is fixed or a new function 
is developed, a request can be made 
through the GitHub system to integrate it 
into the main code. Requests are then 
reviewed by the maintainers, if accepted 
can be integrated and merged into the 
code. At specified milestones, official 
version updates will be released which will 
integrate the latest updates into a down 
loadable package.  

PVLIB code is divided into the following 
modules  

 atmosphere module 

 clear sky module 

 irradiance module 

 location module 

 pv system module 

 solar position module 

 tmy module 

 tracking module 

 tools module 
Example scripts provided take the user 
through all of the modelling stages from 
tmy_weather data input to AC power 
output. 

PVLIB has comprehensive documentation 

http://pvlib-
python.readthedocs.org/en/latest/package_overview.
html  
http://pvlib-
python.readthedocs.org/en/latest/whatsnew.html#v0-
3-0-2016 

Introduction to Python  

Python (https://www.python.org/) is a free 
and open source high-level programming 
environment, supported by a wide range of 
developers, with new features being 
regularly added and maintained. It also 
integrates with web, database and 
graphically intensive processes allowing 

file:///C:/Users/sjransome/Documents/_CONS/CONFS/2016/160406_PVSAT12_Liverpool/jsstein@sandia.gov
mailto:holmgren@email.arizona.edu
file:///C:/Users/sjransome/Documents/_CONS/CONFS/2016/160406_PVSAT12_Liverpool/J.Sutterlueti@gantner-instruments.com
https://github.com/pvlib/pvlib-python
http://pvlib-python.readthedocs.org/en/latest/package_overview.html
http://pvlib-python.readthedocs.org/en/latest/package_overview.html
http://pvlib-python.readthedocs.org/en/latest/package_overview.html
http://pvlib-python.readthedocs.org/en/latest/package_overview.html
http://pvlib-python.readthedocs.org/en/latest/whatsnew.html#v0-3-0-2016
http://pvlib-python.readthedocs.org/en/latest/whatsnew.html#v0-3-0-2016
http://pvlib-python.readthedocs.org/en/latest/whatsnew.html#v0-3-0-2016
https://www.python.org/


 

 

great flexibility when developing models 
and algorithms. Python is designed to be 
easily written and interpreted, and 
because of the high-level nature of the 
code it is easily learned by those with a 
simple understanding of programming 
syntax perhaps from languages such as 
Basic, C or Pascal.  

The language was named after the 1970s 
UK comedy program “Monty Python’s 
Flying Circus”. Help files have several 
references to their sketches.  

Contributing to PVLIB 

Many users will just be happy to run 
PVLIB algorithms as published or read the 
source to understand the algorithms. More 
advanced developers may wish to alter or 
develop new algorithms integrated into the 
PV LIB Python package which will require 
algorithmic and physical testing packages. 
The specific requirements for these are 
published on the PV LIB website. 

Algorithmic testing packages ensure that 
the module will operate properly under all 
reasonable conditions imposed on it by 
users, including logical error handling. 

Physical testing should include a validation 
dataset (included in the test file) which 
demonstrates the implied function of the 
algorithm. This provides users with an 
accessible method of ensuring the 
accuracy of results and ensuring the 
physical validity of their models.  

Python Libraries 

The following external libraries are used 
with Python for greater productivity. 

Numpy http://www.numpy.org/ support for 
large, multi-dimensional arrays and 
matrices, high-level maths functions. 
Scipy http://www.scipy.org/ scientific and 
technical optimisation, linear algebra, 
integration, interpolation, special functions. 
Pandas http://pandas.pydata.org/ data 
manipulation and analysis, manipulating 
numerical tables and time series. 
Matplotlib http://matplotlib.org/ plotting 
library for Python NumPy. I 
Seaborn 
https://stanford.edu/~mwaskom/software/seaborn/ 
visualization library based on matplotlib.for 
attractive statistical graphics. 

PVPMC Website contents: 

The PVPMC website [1] currently contains 
the following information  

 Modelling Steps: includes descriptions 
of the mathematical formulations 
required to simulate a PV system. 

 Research: descriptions of current PV 
modelling research projects submitted 
by members. 

 Applications and Tools: includes 
specific modelling packages (PVLIB, 
GridPV-for modelling PV on distribution 
feeders, Wavelet variability model, and 
datasets). 

 Resources and Events: includes 
workshop proceedings, documents, list 
of references and variable names, 
blog, and email sign-up. 

PV performance Modelling steps 

The steps modelled by the PVPMC are 
illustrated in Figure 1 

 

 

Fig 1. Modelling stages (from the PVPMC website) 

 

Running PVLIB Python scripts  The standard environment for developing 
and running PVLIB Python is “iPython 
Notebook” http://ipython.org/notebook.html. 

http://www.numpy.org/
http://www.scipy.org/
http://pandas.pydata.org/
http://matplotlib.org/
https://stanford.edu/~mwaskom/software/seaborn/
http://ipython.org/notebook.html


 

 

The interface runs in a web browser such 
as Chrome, Firefox or Safari on a PC, 
Apple or Unixas shown in Figure 2. 

Unlike many development environments it 
allows the following 

1) “Pretty” formatted code (using different 
font sizes and bold for the text) 
2) Interpreted language in cells. 
3) Input or Output for interactive work. 
4) Embedded graphics 

  

 

Fig 2. Example Python session in iPython Notebook 

 

Figure 3 illustrates some typical PVLIB 
Python code – this illustrates the SAPM 
thermal model to determine the module 
and cell temperature rises above ambient 

as functions of irradiance, wind speed and 
module mounting. 

 

 

def sapm_celltemp( function name 

    irrad, wind, temp, model='open_rack_cell_glassback'): and input series 

 

    temp_models = {'open_rack_cell_glassback': [-3.47, -.0594, 3], list models 

                   'roof_mount_cell_glassback': [-2.98, -.0471, 1] and values  

                   etc. } 

 

    a = model[0] b = model[1] deltaT = model[2] get model values 

    E0 = 1000. # Reference irradiance set reference 

 

    temp_module = pd.Series(irrad*np.exp(a + b*wind) + temp) calc Tmod (C) 

    temp_cell = temp_module + (irrad / E0)*(deltaT) calc Tcell (C) 

 

    return pd.DataFrame( output all  

        {'temp_cell': temp_cell, 'temp_module': temp_module}) data series 

Fig 3. Typical (simplified) Python code with explanations (right). 

 

PVLIB functions need to be validated with 
measured data. Figure 4 shows a 
correlation between six anisotropic or 

isotropic sky models calculated vs. 
measured GI compared with Gantner 
Instruments measured data at their Tempe 
site [4]. 

 



 

 

 

Fig. 4. Comparing calculated vs. 
measured tilted plane irradiance from six 
PV_LIB anisotropic or isotropic diffuse sky 
models [4]. 

Module and cell temperatures rise above 
ambient depending on plane of array 
irradiance, wind speed, the manufacturing 
technology (e.g. glass-glass, glass-
polymer etc.) and also the mounting 
method (e.g. freely ventilated back, 
insulated back, bipv etc.)  

Figure 5 validates the modelled vs. 
measured average temperature rise above 
ambient vs. wind speed (x axis) and 
irradiance (plots) for a free back CdTe 
module at GI’s Tempe site using the 
default PV_LIB coefficients. A good overall 
agreement can be seen with discrepancies 
generally <±2C.  

Fig. 5. PV_LIB modelled vs. average 
measured module temperature rise above 
TAMBIENT for a CdTe module at GI Tempe 
against wind speed (x axis) and irradiance 
(lines) [4]. 

Figure 6 shows how 3rd parties such as 
SRCL can use the iPython Notebook 
environment and PVLIB functions – the 
graph shows the Marion NREL dataset [5] 
analysed using the Gantner 
Instruments/SRCL LFM. 

 

Fig 6. SRCL analysis of 3rd Party (NREL) 
data using the GI/SRCL LFM. 

Conclusions 

 PVMPC/PVLIB have been introduced 
with links to their website and details of 
their workshops. 

 Anyone interested should download the 
toolbox and is encouraged to learn 
Python and contribute. 

 SRCL can’t get to the 5th Workshop 
but should be at the 6th if anyone has 
any requests for information. 

Dates of next PVPMC Workshops 

5th : 9th May, 2016 Santa Clara, USA  

6th : 24-25th Oct, 2016 Freiburg, Germany. 

Acknowledgements 

 PVPMC contributors, Rob Andrews 
(Heliolytics). 

References 

[1] PVPMC www.pvpmc.org 
[2] PVSC 2014 Andrews, R. et al. 
“Introduction to the Open Source PV LIB 
for Python Photovoltaic System Modelling 
Package”. 40th PVSC 2014 
http://energy.sandia.gov/wp-
content//gallery/uploads/PV_LIB_Python_final_SAND
2014-18444C.pdf 
[3] PVSC 2015 Holmgren, W. et al “PVLIB 
Python 2015“, 42nd PVSC 2015 
https://github.com/pvlib/pvsc2015/blob/master/pvlib_p
vsc_42.pdf 
http://nbviewer.jupyter.org/github/pvlib/pvsc2015/blob
/master/paper.ipynb 
[4] Sutterlueti et al “Improved PV 
Performance Modelling by Combining the 
PV_LIB Toolbox with the Loss Factors 
Model (LFM)” 42nd PVSC 2015   
[5] "User’s Manual for Data for Validating 
Models for PV Module Performance" W. 
Marion et al, NREL CO, NREL/TP-5200-
61610 

http://www.pvpmc.org/
http://energy.sandia.gov/wp-content/gallery/uploads/PV_LIB_Python_final_SAND2014-18444C.pdf
http://energy.sandia.gov/wp-content/gallery/uploads/PV_LIB_Python_final_SAND2014-18444C.pdf
http://energy.sandia.gov/wp-content/gallery/uploads/PV_LIB_Python_final_SAND2014-18444C.pdf
https://github.com/pvlib/pvsc2015/blob/master/pvlib_pvsc_42.pdf
https://github.com/pvlib/pvsc2015/blob/master/pvlib_pvsc_42.pdf
http://nbviewer.jupyter.org/github/pvlib/pvsc2015/blob/master/paper.ipynb
http://nbviewer.jupyter.org/github/pvlib/pvsc2015/blob/master/paper.ipynb

